LRMC Model results

Gas TCMF 25th May 2006

Content

- Gas TCMF Progress and Summary of agreed analysis options
- Expansion factors applied for Transportation Models
- Summary of LRMC Modelling Results
- Explanation of differences in results between models

Gas TCMF Progress

Summary of Options

Alternate Transport Methodology Working Group Consensus

Issue	Working Group Consensus
1. S&D Scenarios: 1 Year or multiple Year?	Less than ten years to remove forecasting uncertainty & increase simplicity
2. How should incremental costs be modelled?	No opinion, although inclusion of spare capacity would indicate Transcost
3. How would spare capacity be treated?	Include "genuine spare capacity" within the Model
4. How would decrement (back flow) costs be treated?	Include within Model

Alternate Tariff Methodology Working Group Consensus

Issue	Working Group Consensus
5. How should entry and exit costs be disaggregated?	Solver with 50: 50 constraint
6. How should negative costs be treated?	Removed as final step (Consider commoditisation of negative prices)
7. Should capacity charges be adjusted to 50:50 entry:exit and if so how?	Solver constraint
8. Are zones required?	Only if capacity is a zone based product
9. Are capacity charges adjusted to recover allowed revenue and if so how?	Where possible by adjustment, otherwise cost recovery via commodity based charges
10. Should year on year price changes be capped?	Retain: Potential to remove year-on- year capping but have capping based on forecast prices

NTS Pricing Model Analysis Options

Option A (Status Quo)	Option B	Option C	Option D	Option F1	Option F2
10 year forecast	1 to n (<=1	0) year fore	cast		
Transcost				Transportation Model + Single Expansion Factor	Transportation Model + Diameter Specific Expansion Factors
Spare Capacity	y No spare capacity				
No Backhaul		Backhaul benefit			
Solver (non- negative)	Solver 50 (Conside	Solver 50: 50 Constraint remove negative prices as final step (Consider commoditisation of negative prices)			
Zoning, Capping and Revenue Recovery method depend on the capacity product					

Expansion Factors

Cost basis of Transportation Models

Transportation Model Expansion Factors

- Expansion factors expressed in £/peak dayMWhkm.
 - Represents the capital cost of the transmission infrastructure required to transport 1 peak day MWh over 1 km.
 - Can be determined for each pipe diameter
 - Derived from the projected cost of steel pipeline projects (same data as Transcost)

• Types weighted by recent NTS usage (900 to 1200mm) to produce the single factor.

- Compression costs included
 - Full recompression to 85bar
- Transportation model calculated incremental flow distance (km) i.e. distance travelled by incremental peak day flow
 - Cost (£/MW)= Flow_Distance(km)*Expansion_Factor(£/MWkm)

Expansion Factors: Pipe Costs

Consider effect on unit incremental flow costs arising from:

Key modelling assumptions

- 100km feeder duplication (parallel pipeline, same diameter)
- Maximum inlet pressure 85bar
- Optimum outlet pressure with minimum of 38 bar
- Maximise flow

Expansion Factors: Compression Cost

Expansion Factor Calculation (100km)

Pipe Diameter [mm]	A. Pipe Costs [£M]	B. Compressor Costs [£M]	C. Maximum Daily Flow [MWh]	Expansion Factor [£/MWkm] =10 ⁶ x((A+B)/C)/100
300	36.01	1.78	33,192	11.39
350	42.27	2.66	49,695	9.04
450	54.77	5.13	95,958	6.24
500	61.03	6.77	126,439	5.36
600	73.54	10.91	203,796	4.14
750	92.30	18.70	362,817	3.06
900	111.06	25.49	567,649	2.41
1050	129.82	32.84	825,379	1.97
1200	148.58	40.61	1,137,851	1.66

Expansion Factors

(Capital Costs)

Gas TCMF LRMC Analysis

Modelling Process

Modelling Process

	Transcost (Models A to D)	Transportation (Models F1 & F2)	
S&D	Compile S&D Scenario		
Network Model	Pipe lengths/diameters Regulators Compressors Compressor parameters Regulator parameters Multi-junction Configurations	Pipe lengths/diameters	
Costs	Pipe cost function Compressors costs	Expansion Factors	
Base Reinforcement	Base reinforcement: Manually optimise Regulators for minimal base year costs		
Incremental costs	Incremental reinforcement for every combination of entry & exit point. Increment size 2.84 Mscm/d	Incremental reinforcement to reference node	
Entry/Exit	Entry/Exit Solver, 50/50 constraint other than model A	Adjust to 50/50 Entry/Exit	
Time to run & solve*	1/2 weeks	1 day	

Modelling Results

- Raw Exit LRMCs
- Nodal Exit Prices
 - All model prices scaled to the revenue implied by the prevailing exit prices (April 2006)
- Exit Zone Prices
 - Flow weighted average of DN nodal prices
- Entry LRMCs
 - Non-negative: Analogous to UCAs

LRMC Model Analysis results

Exit

10 Year Average Exit Price

(Adjusted/Scaled to consistent allowed revenue)

Average Exit Standard Deviation (10 Year)

10 Year Average Exit Prices Scaled/adjusted to recover allowed revenue

Year 1 (2006/7) Prices Scaled/adjusted to recover allowed revenue

Year 1 (2006/7) Prices: Scotland & the North

Exit Price Standard Deviation (Ten years of price estimates)

Model A (10 Year Average) – DN Impact

Model B (10 Year Average) – DN Impact

Model C (10 Year Average)– DN Impact

Model D (10 Year Average) – DN Impact

Model F1 (10 Year Average) – DN Impact

Model F2 (10 Year Average) – DN Impact

LRMC Model Analysis results

Entry

10 Year Average LRMCs – Large Entry Points

30

10 Year Average LRMCs – Small Entry Points

Entry TO Commodity-Estimated rate to recover allowed revenue

Model A Model B Model C Model D Model F1 Model F2

NB Assumes 100% of capacity sold at reserve price

Impact of S&D Scenario

"Central Case" v "Global LNG"

Central Case Supplies

Global LNG Supplies

Impact of S&D Scenario (10 Year Average)

Impact of S&D Scenario (Year 1)

Summary of Model Results

Summary of Model Results(1)

- Model A: Year-on-year variation driven by solver with non-negative constraint only
- Model B: Spare capacity reduces raw prices and results in counter intuitive prices when scaled (e.g. Scotland exit)
- Model C: Considering backhaul by only considering forward flow routes has little impact when spare capacity is modeled.
- Model D: Combination of forward flow and no spare capacity improves cost reflectivity (i.e. alignment with expected trend) but Transcost can only approximate removal of spare capacity.

Summary of Model Results(2)

- Transportation Models (F1 & F2) Closer than Transcost models to prevailing prices. Year-on-year variation can be linked directly to S&D changes.
- Model F1: Most stable (year-on-year) yet retains cost reflectivity.
- Model F2: Most cost reflective yet still more stable than Transcost models.