LRMC – Tariff Model Options

Gas TCMWG - Gas Transmission Charging Methodologies Working Group 9th March 2006

Introduction

- This presentation covers
 - Options for potential enhancements to the LRMC Methodology Tariff model
 - Initial Option Assessment

LRMC Methodology Enhancement Options

Potential Enhancements

Potential Enhancements

Transport Model

- Investigating potential enhancements to "Transcost" and alternative "simpler" models
- If Transcost is to be retained, considering ways in which model could be made easier to use by industry

Tariff Model (post processing)

 Assessing whether there are any better alternatives to the way in which the outputs from the Transport Model are used to derive tariffs

Today we will consider the Tariff Model Options

Key Questions for the Review

- 1. SED Scenarios: 1 Year or multiple Year?
- 2. How should incremental costs be modelled?
- 3. How should spare network capacity be treated?
- 4. Should decrement (back flow) costs be considered?
- 5. How should entry and exit costs be disaggregated?
- 6. How should negative costs be treated?
- 7. Should capacity charges be adjusted to 50:50 entry:exit and if so how?
- 8. Are zones required?
- 9. Should capacity charges be adjusted to recover allowed revenue and if so how?
- **10.** Should year on year price changes be capped?

Transport Model Tariff Model

Key Questions for the Review

- 1. S&D Scenarios: 1 Year or multiple Year?
- 2. How should incremental costs be modelled?
- 3. How should spare network capacity be treated?
- 4. Should decrement (back flow) costs be considered?
- 5. How should entry and exit costs be disaggregated?
- ം. Howsh ∢A) Reference node?
- 7. Should •B) Solver with
- s. Are zon
- Should +50
 allowed reven

-) 50:50
- Non-negative constraint?
- •50:50 constraint?

d legovel

- Ellowed revenue and if so how?
- 10. Should year on year price changes be capped?

LRMC Methodology Enhancement Options

Entry Exit Cost Disaggregation

Example Network

Example Network Calculate flows from Supply & Demand Data

Example Network

(calculate reinforcement cost per GWh/day for each pipe section)

Example Network Example Route Costs (No backhaul costs)

	Entry A	Entry B	Entry C
Exit 1	<u>32</u>	21	2
Exit 2	24	13	4
Exit 3	2	11	2
Exit 4	24	13	4

NB Only consider costs for a route if the flow increases

Example Network Example Route Cost (inc backhaul costs)

Example Network Example Route Cost (Positive flows only)

Example Network Route Cost Matrices (£/peak day GWh)

No Backhaul			Backhaul Included				
				Entry A	Entry B	Entry C	
				Exit 1	32	21	2
	Entry A	Entry B	Entry C	Exit 2	24	13	-6
				Exit 3	2	-9	-28
	20	01	2	Exit 4	24	13	-6
	52		Ζ				
		10					
Exit 2	24	13	4		Entry A	Entry B	Entry C
Evit 3	2	11	2	Exit 1	32	21	2
	2	11	2	Exit 2	24	13	na
	24	12		Exit 3	2	na	na
	24		4	Exit 4	24	13	na

Solver Concept

- Find Entry & Exit Costs that minimise the sum of the differences (squared) between each
 - Route Cost, and
 - The relevant Entry + Exit Costs
- For all routes (Sum of Squared Errors ~ SSE)

$$SSE = \sum_{ForallXY} \left[EntryX + ExitY - Route _Cost _XY \right]^{2}$$

- Solver minimise SSE by varying Entry and exit cost estimates
- Constraints
 - All Entry and Exit costs must be greater than or equal to zero

Solver Solution (No Backhaul) Non-negative constraint

Solver Solution (No Backhaul) 50: 50 Constraint

Solver Solution (Backhaul) 50: 50 Constraint

Solver Solution (Flow Only) 50: 50 Constraint

Impact of Backhaul on Marginal costs Solver Solution

Example Network Reference Node Costs (No backhaul costs)

Example Network Reference Node Costs (Inc backhaul)

Impact of Backhaul on Marginal costs Reference Node Solution

Example Unscaled LRMCs

Entry Exit Cost Disaggregation

Solver

- Removing negative constraint allows cost differences to be maintained more closely
- Consideration of backhaul allows for an exact fit
- Multiple solution can be found when considering negative prices and hence a 50: 50 split must be imposed

- Reference Node
 - Without imposing a 50: 50 Entry: Exit split, selection of the reference node affects prices and defines the entry exit split

Key Questions for the Review

- 1. S&D Scenarios: 1 Year or multiple Year?
- 2. How should incremental costs be modelled?
- 3. How should spare network capacity be treated?
- 4. Should decrement (back flow) costs be considered?
- 5. How should entry and exit costs be disaggregated?
- 6. How should negative costs be treated?
- Should 7. に50 A) Removed ... eniryte •by solver? Are zo 8. Should as last step in Methodology? 9, CONSL allowa B) Retained; no. Should ped? With obligation to flow? national**grid** Commoditised?

Negative Costs

Negative Entry

- Entry flows would have to be at capacity level for the same period and duration as exit flows to avoid investment and hence for negative Entry prices to have meaning
- These arrangements are effectively in place via the constrained LNG arrangements

Negative Exit

- Beach terminals expected to be close to peak for up to 100 days in a 1-in-50 winter
- Exit flows would have to be at capacity level for the same duration to avoid investment and hence for negative Exit prices to have meaning

nationalgrid

Allowing Negative prices within the solver allows for Entry and Exit Costs that are more reflective of the route cost for all routes.

Key Questions for the Review

- 1. S&D Scenarios: 1 Year or multiple Year?
- 2. How should incremental costs be modelled?
- 3. How should spare network capacity be treated?
- 4. Should decrement (back flow) costs be considered?
- 5. How should entry and exit costs be disaggregated?
- e. How should negative costs be treated?
- 7. Should capacity charges be adjusted to 50:50 entry:exi (A) 50:50
- 3. Are zone
- o. Should c ellowed i
- 10. Should y
- Scaling (multiplicative)?

NEVC

- Adjustment (additive)?
- •by solver?

. []

50:50 Entry: Exit Split

Scaling

- Erodes cost differentials
- Consistent with no backhaul modelling (no negative prices)?

Adjustment

- Maintains cost differences
- Consistent with modelling of backhaul (and negative prices)

Consideration of a single pipe or a more complex system with backhaul benefits indicates that a split between entry and exit costs should be imposed.

Tariff Option Variants

Issue	Variant A	Variant B	Variant C	Variant D	Variant E
Backhaul	No Backhaul	No Backhaul	Backhaul	No Backhaul	Backhaul
Entry Exit	Solver with non- negative constraint	Solver	Solver 50: 50 Constraint	Reference Node	Reference Node
50: 50 & Revenue recovery	Scale or Adjust	Scale or Adjust	Scale or Adjust	Scale or Adjust	Scale or Adjust
Negative Costs	Removed by Solver	Removed as final step	Removed as final step	Removed as final step	Removed as final step

Unscaled LRMCs

LRMCs Scaled to 50: 50 Entry: Exit

LRMCs Adjusted to 50: 50 Entry: Exit

LRMCs <u>Scaled</u> to 50: 50 Revenue Recovery Negative prices removed

LRMCs <u>Adjusted</u> to 50: 50 Revenue Recovery Negative prices removed

Reducing the Tariff Model Options

- Price adjustment, with negative prices removed as part of the final step, increases stability compared to scaling
- When Backhaul costs are included, the reference node approach produces identical answers to the solver

Issue	Variant A	Variant B	Variant C	Variant D
Backhaul	No Backhaul	No Backhaul	Backhaul	No Backhaul
Entry Exit	Solver with non-negative constraint	Solver 50: 50 Constraint	Solver 50: 50 Constraint (or Ref Node)	Reference Node
50: 50 & Revenue recovery	Scale	Adjust	Adjust	Adjust
Negative Costs	Remove by Solver	Remove as final step	Remove as final step	Remove as final step

Options Assessment Variant A

No Backhaul, Solver (Non-negative), Scale to 50:50/ Revenue

Objective	Capacity prices should	Pros	Cons
GL1: "Reflect Costs"	reflect the costs associated with providing that capacity	Scaling maintains cost ratios	Solver Negative Constraint and scaling erode Cost differentials
GL2: "Facilitate Competition" GL5: "Promote Competition"	GM3 : be easy to understand and implement.		Solver Negative Constraint reduces Transparency
GL3: "Business Development"	GM2 : generate stable charges;	Scaling consistent with no backhaul benefit?	Solver Negative Constraint and scaling reduce stability
GL4 :"Promote Efficiency"	GM1 : promote efficient use of the transportation system;		

Options Assessment Variant B

No Backhaul, Solver, Adjust to 50:50 & Recover Revenue

Objective	Capacity prices should	Pros	Cons
GL1: "Reflect Costs"	reflect the costs associated with providing that capacity	50:50 Solver and adjusting charges helps to protect cost differentials	Cost ratios not maintained
GL2: "Facilitate Competition"	GM3 : be easy to understand and implement.		
GL3: Promote Competition" GL3: "Business Development"	GM2: generate stable charges;	50:50 Solver and adjusting charges increases stability	
GL4 :"Promote Efficiency"	GM1 : promote efficient use of the transportation system;		

Options Assessment Variant C

Backhaul, 50 50 Solver, Adjust to 50:50 / Recover Revenue

Objective	Capacity prices should	Pros	Cons
GL1: "Reflect Costs"	reflect the costs associated with providing that capacity	50:50 Solver and adjusting charges protects cost differentials	Cost ratios not maintained
GL2: "Facilitate Competition"	GM3 : be easy to understand and implement.		
GL3: "Promote Competition" GL3: "Business Development"	GM2: generate stable charges;	50:50 Solver and adjusting charges increases stability	
GL4 :"Promote Efficiency"	GM1 : promote efficient use of the transportation system;		

Options Assessment Variant D

No Backhaul, Reference Node, Adjust to Revenue

Objective	Capacity prices should	Pros	Cons
GL1: "Reflect Costs"	reflect the costs associated with providing that capacity		Without backhaul, selection of the reference node affects cost reflectivity
GL2: "Facilitate Competition" GL5: "Promote Competition"	GM3: be easy to understand and implement.GM2: generate stable charges;	Reference node may increase Transparency?	
"Business Development"			
GL4 :"Promote Efficiency"	GM1 : promote efficient use of the transportation system;		

Key Questions for the Review

- 1. S&D Scenarios: 1 Year or multiple Year?
- 2. How should incremental costs be modelled?
- 3. How should spare network capacity be treated?
- 4. Should decrement (back flow) costs be considered?
- 5. ਮਿ੦ਿਆ ਤੀ ◆A) For DN purposes?
- ৫. দি০৬ হা ◆B) To mirror exit regime?
- 7. Should entry:e ◆C) To enhance stability?
- 8. Are zones required?
- Should capacity charges be adjusted to recover allowed revenue and if so how?
- 10. Should year on year price changes be capped?

nationalgrid

?locistoent

1:50

Are Zones Required?

- Zones might be required by
 Zones increase stability DNs but DNs could generate their own zonal charges.
- Zoning could erode cost differentials and hence should be avoided when possible.

Key Questions for the Review

- 1. S2D Scenarios: 1 Year or multiple Year?
- 2. How should incremental costs be modelled?
- 3. How should spare network capacity be treated?
- 4. Should decrement (back flow) costs be considered?
- 5. Howshoul ◆A) No, recover via commodity

sied?

- How shoul B) Yes
- Should cap entry:exit

5.

8.

- i) Scaling (multiplicative)?
- Are zones
 Ii) Adjustment (additive)?
- 9. Should capacity charges be adjusted to recover allowed revenue and if so how?
- 10. Should year on year price changes be capped?

Should capacity charges be adjusted to recover allowed revenue and if so how?

- Recover Revenue via Capacity Charges
 - Any remaining allowed revenue Might reflect spare capacity and hence could be recovered by an adjustment of capacity charges
 - If LRMCs under recover allowed revenue, recovery via adjusting capacity charges would help to maintain cost differentials before any remaining negative prices were removed
 - Consistent with administered charges or a user commitment model

- Recover Revenue via Commodity Charges
 - Any remaining allowed revenue might reflect non-locational costs and hence could be recovered via a commodity charge.
 - Would make the capacity: commodity split less stable and predictable
 - Consistent with auction over or under recovery

Key Questions for the Review

- 1. S&D Scenarios: 1 Year or multiple Year?
- 2. How should incremental costs be modelled?
- 3. How should spare network capacity be treated?
- 4. Should decrement (back flow) costs be considered?
- 5. How should entry and exit costs be disaggregated?
- e. How should negative costs be treated?
- 7. Should capacity charges be adjusted to 50:50 entry:exit and it so how?
- Are zone
 Are zone
 A) To reflect uncertainty (forecast change)?
- allowed (◆B) To enhance stability?
- **10.** Should year on year price changes be capped?

nationalgrid

)Yer

Should year on year price changes be capped?

- Remove Capping
 - Capping erodes cost reflectivity
 - Price changes at an Entry/Exit point can be expected to change as a result of other S&D changes

- Retain Capping
 - Capping creates price stability
 - If prices are based on a single year, consider forecasting prices a year ahead and capping based on forecast

Should not be required if charges can become more stable and predictable

Final Tariff Steps

	Issue	Prevailing Exit	Way Forward
8	Are zones required?	Yes	No (Unless required for the capacity product)
9	Are capacity charges adjusted to recover allowed revenue and if so how?	Yes	Adjust capacity charges where possible (Commodity may be required for auction over or under recovery)
10	Should year on year price changes be capped?	Yes (+/- 30%)	No capping

Assessment of Final Tariff Setting Steps

Adjust to allowed revenue, No Zoning or Capping

Objective	Capacity prices should	Pros	Cons
GL1: "Reflect Costs"	reflect the costs associated with providing that capacity	Removing Capping and zoning maintains cost reflectivity	
GL2: "Facilitate Competition"	GM3 : be easy to understand and implement.	Removing Capping and zoning simplifies	
Competition"		the process	
GL3: "Business Development"	GM2 : generate stable charges;		Removing capping and zoning might reduce stability
GL4 :"Promote	GM1: promote efficient use of	Removing	
Efficiency"	the transportation system;	zoning promotes efficient use of the system	