

4) Overview of Transportation / Transcost Models

5) Capacity Initial Proposals

- Input assumptions
- Entry Capacity Baseline Reserve Price Analysis
- 6) Way Forward

4) Overview of Transportation / Transcost Models

Gas TCMF 6th July 2006

Transcost

- Physical Model
- Incremental flows based on flow and pressure model (pan-handle)
- *P*₁² − *P*₂² = kIQ²/D⁵
 where
- P₁~ inlet pressure
- P₂ ~ outlet pressure
- Q ~ flow
- D ~ diameter
- K ~ constant

- Incremental costs based on minimum cost of pipe and/or compression required to maintain pressures
 - Additional compressor units added at existing sites
 - Additional pipe added in parallel to existing pipes
 - Incremental costs only

Transportation model + Expansion Factor

- Transportation Model flows are calculated by minimising the total distance over which gas flows (flow-distance).
- Marginal flow increase results in a flow-distance change
 - Can be positive or negative
- An estimated cost (Expansion Factor) is applied to the marginal flow-distance (MWhkm).

 $\sum_{AllPipes} (Q * L)$

- Where
- Q = Pipe flow (peak-day MWh)
- L = pipe length (km)

S&D Data

Transcost

- Nodal Demands (GWh)
- Nodal Supplies (GWh)
- Supply node CVs

Transportation Model

- Nodal Demands (GWh)
- Nodal Supplies (GWh)

Network Data

 Transcost Pipe length & diameter Regulators including pressure & flow settings Compressors including pressure settings Configuration i.e. which side of a compressor or regulator a pipe section is fed from 	 Transportation Models Pipe Length
 All these network parameters are set by a network analyst within each Gas Years base model and they can effect prices 	

None of the network parameters that can be varied each Gas Year are modelled in the Transportation models.

Summary of Input Data

Incremental Cost Data

Transcost

- Incremental flow modelled
 - 2.834 Mscm/d
- Every combination of entry and exit points modelled
- Pressures maintained by identifying minimum additional pipe and compressor projects
- Incremental cost = pipe + compression

Transportation Model

- Marginal flow modelled
 - 1kWh
- Cost to reference node calculated
- Marginal change to minimum flow-distance calculated
- Incremental cost = marginal flow-distance multiplied by Expansion Factor

Incremental Costs

Incremental Costs

Expansion Factor

- A Pipe Cost [£]
 - Calculated from pipe cost equation (£/km)
- B Compressor Cost [£]
 - Calculated from compressor cost equation (£/MW)
- C Project (15%) & Operational Costs (1.5%)[£]
- D Capacity (Maximum at 85barg) [peak-d-GWh]
- E Pipe Length 100 km
- Expansion Factor= ((A+B+C)/D)/E [£/pk-d-GWhkm]

Model Summary

Transcost

- Physical model of system flows and pressures hence costs are driven by
 - Network assets
 - Changes in S&D
 - Compressor and regulator settings
 - Network configuration
- Cost are based on additional assets but incremental flows may not require reinforcement hence
 - Spare capacity is included
 - Cost are always greater or equal to zero

Transportation Model

- Flow model based on minimum flow distance hence costs are driven by
 - Pipe lengths
 - Changes in S&D

- Incremental flows will always result in the flow distance increasing or decreasing hence
 - No spare capacity is modelled
 - Backhaul cost benefits are modelled

6) Entry & Exit Capacity Initial Proposals

Gas TCMF 6th July 2006

Transport Methodology (Transitional Exit)

Issue	Prevailing Exit Arrangements	Working Group Consensus	Initial Proposals
1. S&D Scenarios: 1 Year or multiple Year?	10 Gas Years	Less than ten Gas Years to remove forecasting uncertainty & increase simplicity	Single Gas Year Network model and S&D data for gas year
2. How should incremental costs be modelled?	Transcost	No opinion, although inclusion of spare capacity would indicate Transcost	Transportation Model with single expansion factor
3. How would spare capacity be treated?	Included (although "held pressures" remove some capacity)	Include "genuine spare capacity" within the Model	Excluded from model
4. How would decrement (back flow) costs be treated?	No backhaul cost benefit included	Include within Model	Include within model

Tariff Methodology (Transitional Exit)

Issue	Prevailing Exit Arrangements	Working Group Consensus	Initial Proposals
5. How should entry and exit costs be disaggregated?	Solver with non- negative constraint	Solver with 50: 50 constraint	Reference node
6. How should negative costs be treated?	Removed by solver	Removed as final step	Removed as part of final step (revenue recovery)
7. Should capacity charges (LRMCs) be adjusted to 50:50 entry:exit and if so how?	LRMCs are not adjusted	Yes - Solver constraint	Adjust to 50 50.
8. Are zones required?	Exit Capacit charges are zonal	Only if capacity is a zone based product	Transitional exit is Zonal
9. Are capacity charges adjusted to recover allowed revenue and if so how?	Prices scaled to recover 50% of allowed revenue.	Where possible by adjustment, otherwise recovery via commodity based charges	Prices adjusted to recover 50% of allowed revenue.
10. Should year on year price changes be capped?	LRMCs are capped relative to the previous Gas Year (+/-30%)	Retain: Potential to remove year-on-year capping but have capping based on forecast prices	No capping

NTS Exit Capacity Charging Implementation

Initial Proposals

- Implementation for 1st April 2007
 - Methodology change need to be implemented December 2006 to allow updated charges for use from 1st April 2007.
- Prices would normally be updated annually for 1st October
- The combined Transport and Tariff model would be made available to Users once S&D data could be made available (This may require a UNC Modification)

Transport Methodology (Entry)

Issue	Prevailing Entry Arrangements	Initial Proposals
1. S&D Scenarios: 1 Year or multiple Year?	10 Gas Years	Single Gas Year
		Capacity priced on Network model and S&D data for relevant Gas Year
		Relevant Entry point at;
		baseline/obligated level
		and
		baseline/obligated + incremental levels
2. How should incremental costs be modelled?	Transcost + Falcon	Transportation Model with single expansion factor
3. How would spare capacity be treated?	Included (although "held pressures" remove some capacity)	Excluded from model
4. How would decrement (back flow) costs be treated?	No backhaul cost benefit included	Include within model

Tariff Methodology (Entry)

Issue	Prevailing Entry Arrangements	Initial Proposals
5. How should entry and exit costs be disaggregated?	Solver with non-negative constraint (Reference node for falcon analysis)	Reference node
6. How should negative costs be treated?	Removed by solver	Removed as part of final step (50 50 adjustment)
7. Should capacity charges (LRMCs) be adjusted to 50:50 entry:exit and if so how?	LRMCs are not adjusted	Adjust to 50 50.
8. Are zones required?	No	Νο
9. Are capacity charges adjusted to recover allowed revenue and if so how?	No	Νο
10. Should year on year price changes be capped?	Reserve prices are based on UCAs	No capping
		De-link UCAs
		Remove auction discounts

NTS Entry Capacity Charging Implementation

Initial Proposals

- Implementation for 1st April 2007 revised reserve prices would apply for all auctions held on or after 1st April 2007
- Prices would normally be updated annually for October
- The combined Transport and Tariff model would be made available to Users once S&D data could be made available (This may require a UNC Modification)

Assumptions

	Network	Supply & Demand
Entry	 Network for relevant Gas Year including all future planned / committed projects up to that Gas Year Gas Year 0 Gas Year 1 Gas Year 2 	 Base Case for Gas Year Separate analysis for each terminal and Gas Year: relevant terminal increased to baseline flow Supply substitution used to balance S&D
Exit	Network for relevant Gas Year including all future planned / committed projects up to that Gas Year	Base Case forecast for Gas Year

LONG TERM (LTSEC) AUCTION	ANNUAL (AMSEC) AUCTION	ROLLING MONTHLY (RMSEC) AUCTION	D/ (DSEC AUC	AILY C/DISEC) CTION
QUARTELY CAPACITY	MONTHLY CAPACITY	MONTHLY CAPACITY	DAILY INT. CA	Y/DAILY APACITY
•Gas Year N+2 •Baseline •Incremental	•Gas Year N •(April to Sept) •Gas Year N+1 •(Oct to Sept) •Gas Year N+2 •(Oct to Mar)	•Gas Year N	•Daily Firm •Gas Year N	•Daily Interruptible •Pay as bid (zero reserve)
			GAS D	AY (D)
Capacity Years 2 to 17 Ahead	Capacity Years 1 & 2 Ahead	Month Ahead	Gas Day and D	head Anationalgrid

Price Setting Timeline & Input Data

- Input data from 1st April '07
 Input data @1st Oct '07
 - Gas Year 2006/7
 - NTS Exit
 - DSEC
- Input data @1st Sept '07
 - Gas Year 2006/7
 - NTS Exit
 - DSEC
 - Gas Year 2007/8
 - RMSEC
 - Gas Year 2009/10
 - LTSEC (First six months)
 - Gas Year 20010/11
 - LTSEC

NB Gas Year is Oct to Sept whereas Capacity Year is April to March hence multiple prices within a Capacity year.

- - Gas Year 2007/8
 - NTS Exit
 - DSEC, RMSEC
- Input data @1st Feb '08
 - Gas Year 2007/8
 - NTS Exit
 - DSEC, RMSEC
 - AMSEC (First 6 months)
 - Gas Year 2008/9
 - AMSEC (Middle 12 Months)
 - Gas Year 2009/10
 - AMSEC (Last 6 months)

NB Slide corrected post meeting nationalgrid

Entry Capacity Baseline Reserve Price Analysis

Gas TCMF 6th July 2006

Aims

- To summarise the analysis undertaken with the Transportation Model to provide indicative baseline reserve prices
- To compare these prices with prices based on the current methodology (UCA based prices)

Key assumptions

- Three gas years considered: 2006/7, 2007/8, 2008/9
- 1 in 20 Peak Supply/Demand Scenario
 - Price at max physical baseline*/permanent obligated capacity level
 - Use supply merit order to balance supply with demand, using central case flows as a starting point
 - Consider each entry point separately
- Network Model
 - Include only approved investment projects completed before gas year under consideration
- Where no baseline or obligated level, set zero reserve price (consistent with current methodology)

*as determined by current Licence

Initial Thoughts: Entry Capacity Baseline Reserve Price

TPCR	Decouple Entry Capacity Baseline Reserve Prices and Licence UCAs		
Charging Principles	LRMC-based price	 Single year costs Peak central case supply/demand scenario adjusted for practical max physical baseline capacity level for each entry point (i.e. 20 entry points = 20 LRMC analyses) Networks as planned for relevant years (sanctioned projects) Adjusted for 50:50 Entry:Exit split Non-negative nodal price for each entry point TO Commodity Charge for under/over-recovery 	
LTSEC (Firm)	Single price for all years	 Network and adjusted peak supply/demand scenarios for Y+2 	
AMSEC (Firm)	Price for each year	 Network and adjusted peak supply/demand scenarios for Y+1 and Y+2 	
RMSEC (Firm) DSEC (Firm)	Price within year	 Network and adjusted peak supply/demand scenarios for Y 	

Results Summary

Compare prices from current methodology...

- Ofgem proposed 2008/9 UCAs converted to prices
- LTSEC/MSEC Reserve Price for 2006/7 auctions

...with

- Indicative prices using central case flows with adjustments for baseline/obligated levels as for proposed methodology
- Illustrative prices using central case flows

Larger Entry Points: Indicative Prices

Smaller Entry Points: Indicative Prices

Summary

- Current UCAs
 - Are intended as incremental revenue drivers
 - No longer reflect latest underlying marginal costs of capacity provision
- Prices based on Ofgem's proposed UCAs may be significantly different from current prices especially at smaller entry points
- Prices reflecting entry baseline capacity levels can be higher than those based on central case flows, but in general
 - Are more stable
 - Reflect beneficial local flows from smaller entry points and system wide impact of larger entry points
 - Are more consistent with Transporter's obligations for baseline and incremental entry capacity release

7) Way Forward - Capacity

Gas TCMF 6th July 2006

Way Forward – Capacity Charges

- Produce a Gas TCMF progress report on model options and analysis undertaken to date (JULY).
- Produce a consolidated charging consultation paper on entry and exit capacity charges for use from 1st April 2007 (AUGUST).
- Support consultation paper by a new version of the charging methodology statement to ensure clarity of our proposals (AUGUST).
- Progress issues associated with publishing S&D data (AUGUST/SEPTEMBER)

