Backhaul "Solver" Example

Gas Transmission Charging Methodology Working Group 2nd March 2006

Example Network

Example Network Calculate flows from Supply & Demand Data

Example Network

(calculate reinforcement cost per GWh/day for each pipe section)

Example Network Example Route Costs (No backhaul costs)

	Entry A	Entry B	Entry C
Exit 1	<u>32</u>	21	2
Exit 2	24	13	4
Exit 3	2	11	2
Exit 4	24	13	4

NB Only consider costs for a route if the flow increases

Example Network Example Route Cost (inc backhaul costs)

Example Network Route Cost Matrices (£/peak day GWh)

No Backhaul		Backhaul Included					
	Entry A	Entry B	Entry C		Entry A	Entry B	Entry C
Exit 1	32	21	2	Exit 1	32	21	2
Exit 2	24	13	4	Exit 2	24	13	-6
Exit 3	2	11	2	Exit 3	2	-9	-28
Exit 4	24	13	4	Exit 4	24	13	-6

Solver Concept

- Find Entry & Exit Costs that minimise the sum of the differences (squared) between each
 - Route Cost, and
 - The relevant Entry + Exit Costs
- For all routes (Sum of Squared Errors ~ SSE)

$$SSE = \sum_{ForallXY} \left[EntryX + ExitY - Route _Cost _XY \right]^{2}$$

- Solver minimise SSE by varying Entry and exit cost estimates
- Constraints
 - All Entry and Exit costs must be greater than or equal to zero

Solver Solution

Solver Solution (Backhaul)

Entry & Exit Solved Cost

			Entry A	Entry B	Entry C
			15.2	9.2	0
		Entry + Exit			
Exit 1	10.2		25.4	19.4	10.2
Exit 2	5.6		20.8	14.8	5.6
Exit 3	0		15.2	9.2	0
Exit 4	5.6		20.8	14.8	3.5

Entry & Exit Solved Cost

			Entry A	Entry B	Entry C
			16.7	5.7	-13.3
		Entry + Exit			
Exit 1	15.3		32	21	2
Exit 2	7.3		24	13	-6
Exit 3	-14.7		2	-9	-28
Exit 4	7.3		24	13	-6

Impact of Backaul on Marginal costs

